• <s id="nrabq"><strong id="nrabq"><tt id="nrabq"></tt></strong></s>
    1. <sub id="nrabq"></sub>
    2. 区一区二区三区中文字幕,成人动漫在线观看,蜜臀视频一区二区在线播放,无码专区 人妻系列 在线,日本亚洲欧洲免费无线码 ,欧美亚洲国产成人一区二区三区 ,好吊视频在线一区二区三区 ,亚洲国产成人综合自在线

      您好,歡迎來到山東合運電氣有限公司網站!

      關于合運 | 聯系我們 | 用戶須知 | sitemap

      400-088-6921155-8888-6921

      山東合運電氣有限公司

      手機:15588886921(同微信)

      官網:www.imoci.cn

      郵箱:2466458158@qq.com

      電源問答

      首頁 > 電源問答

      派克變換

      時間:2022-11-13 人氣: 來源:山東合運電氣有限公司

        派克變換(也譯作帕克變換,英語:Park's Transformation),是目前分析同步電動機運行最常用的一種坐標變換,由美國工程師派克(R.H.Park)在1929年提出。派克變換將定子的a,b,c三相電流投影到隨著轉子旋轉的直軸(d軸),交軸(q軸)與垂直于dq平面的零軸(0軸)上去,從而實現了對定子電感矩陣的對角化,對同步電動機的運行分析起到了簡化作用。

      定義


        派克正變換:


        {\displaystyle{\mathbf{i}}_{dq0}={\mathbf{P}}{\mathbf{i}}_{abc}={\frac{2}{3}}\left[{\begin{array}{*{20}c}{\cos\theta}&{\cos\left({\theta-120^{\circ}}\right)}&{\cos\left({\theta+120^{\circ}}\right)}\\{-\sin\theta}&{-\sin\left({\theta-120^{\circ}}\right)}&{-\sin\left({\theta+120^{\circ}}\right)}\\{\frac{1}{2}}&{\frac{1}{2}}&{\frac{1}{2}}\\\end{array}}\right]\left[{\begin{array}{*{20}c}{i_{a}}\\{i_{b}}\\{i_{c}}\\\end{array}}\right]}{\displaystyle{\mathbf{i}}_{dq0}={\mathbf{P}}{\mathbf{i}}_{abc}={\frac{2}{3}}\left[{\begin{array}{*{20}c}{\cos\theta}&{\cos\left({\theta-120^{\circ}}\right)}&{\cos\left({\theta+120^{\circ}}\right)}\\{-\sin\theta}&{-\sin\left({\theta-120^{\circ}}\right)}&{-\sin\left({\theta+120^{\circ}}\right)}\\{\frac{1}{2}}&{\frac{1}{2}}&{\frac{1}{2}}\\\end{array}}\right]\left[{\begin{array}{*{20}c}{i_{a}}\\{i_{b}}\\{i_{c}}\\\end{array}}\right]}


        逆變換:


        {\displaystyle{\mathbf{i}}_{abc}={\mathbf{P}}^{-1}{\mathbf{i}}_{dq0}=\left[{\begin{array}{*{20}c}{\cos\theta}&{-\sin\theta}&1\\{\cos\left({\theta-120^{\circ}}\right)}&{-\sin\left({\theta-120^{\circ}}\right)}&1\\{\cos\left({\theta+120^{\circ}}\right)}&{-\sin\left({\theta+120^{\circ}}\right)}&1\\\end{array}}\right]\left[{\begin{array}{*{20}c}{i_gtlv65vdw}\\{i_{q}}\\{i_{0}}\\\end{array}}\right]}{\displaystyle{\mathbf{i}}_{abc}={\mathbf{P}}^{-1}{\mathbf{i}}_{dq0}=\left[{\begin{array}{*{20}c}{\cos\theta}&{-\sin\theta}&1\\{\cos\left({\theta-120^{\circ}}\right)}&{-\sin\left({\theta-120^{\circ}}\right)}&1\\{\cos\left({\theta+120^{\circ}}\right)}&{-\sin\left({\theta+120^{\circ}}\right)}&1\\\end{array}}\right]\left[{\begin{array}{*{20}c}{i_gtlv65vdw}\\{i_{q}}\\{i_{0}}\\\end{array}}\right]}


        派克變換也作用在定子電壓與定子繞組磁鏈上:{\displaystyle{\mathbf{u}}_{dq0}={\mathbf{P}}{\mathbf{u}}_{abc}}{\displaystyle{\mathbf{u}}_{dq0}={\mathbf{P}}{\mathbf{u}}_{abc}},{\displaystyle{\mathbf{\Psi}}_{dq0}={\mathbf{P}}{\mathbf{\Psi}}_{abc}}{\displaystyle{\mathbf{\Psi}}_{dq0}={\mathbf{P}}{\mathbf{\Psi}}_{abc}}


      幾何解釋

      微信截圖_20221113230949.png

        上圖描繪了派克變換的幾何意義,定子三相電流互成120度角,{\displaystyle\delta}\delta為定子電流落后于它們對應的相電壓的角度。直軸與交軸電流分別等于定子三相電流在d軸與q軸上的投影。(圖中的比例系數{\displaystyle{\sqrt{\frac{3}{2}}}}{\displaystyle{\sqrt{\frac{3}{2}}}}是由于圖中所采用的是正交形式的派克變換)d-q坐標系在空間中以角速度{\displaystyle\omega}\omega逆時針旋轉,故{\displaystyle\theta=\omega t}{\displaystyle\theta=\omega t}以d軸領先a相軸線的方向為正。當定子電流為三相對稱的正弦交流電時,{\displaystyle i_gtlv65vdw}{\displaystyle i_gtlv65vdw},{\displaystyle i_{q}}{\displaystyle i_{q}}為直流電流,{\displaystyle i_{0}=0}{\displaystyle i_{0}=0}。


      用派克變換化簡同步發電機基本方程


      變換后的磁鏈方程


        磁鏈方程:


        {\displaystyle\left[{\begin{array}{*{20}c}{{\mathbf{\Psi}}_{abc}}\\{{\mathbf{\Psi}}_{fDQ}}\\\end{array}}\right]=\left[{\begin{array}{*{20}c}{{\mathbf{L}}_{SS}}&{{\mathbf{L}}_{SR}}\\{{\mathbf{L}}_{RS}}&{{\mathbf{L}}_{RR}}\\\end{array}}\right]\left[{\begin{array}{*{20}c}{-{\mathbf{i}}_{abc}}\\{{\mathbf{i}}_{fDQ}}\\\end{array}}\right]}{\displaystyle\left[{\begin{array}{*{20}c}{{\mathbf{\Psi}}_{abc}}\\{{\mathbf{\Psi}}_{fDQ}}\\\end{array}}\right]=\left[{\begin{array}{*{20}c}{{\mathbf{L}}_{SS}}&{{\mathbf{L}}_{SR}}\\{{\mathbf{L}}_{RS}}&{{\mathbf{L}}_{RR}}\\\end{array}}\right]\left[{\begin{array}{*{20}c}{-{\mathbf{i}}_{abc}}\\{{\mathbf{i}}_{fDQ}}\\\end{array}}\right]}


        上式中的電感系數矩陣{\displaystyle{{\mathbf{L}}_{SS}},{{\mathbf{L}}_{SR}},{{\mathbf{L}}_{RS}},{{\mathbf{L}}_{RR}}}{\displaystyle{{\mathbf{L}}_{SS}},{{\mathbf{L}}_{SR}},{{\mathbf{L}}_{RS}},{{\mathbf{L}}_{RR}}}事實上都含有隨時間變化的角度參數[1],使得方程求解困難。


        現對等式兩邊同時左乘{\displaystyle\left[{\begin{array}{*{20}c}{\mathbf{P}}&{}\\{}&{\mathbf{U}}\\\end{array}}\right]}{\displaystyle\left[{\begin{array}{*{20}c}{\mathbf{P}}&{}\\{}&{\mathbf{U}}\\\end{array}}\right]},其中{\displaystyle{\mathbf{U}}}{\displaystyle{\mathbf{U}}}為三階單位矩陣。方程化為:


        {\displaystyle\left[{\begin{array}{*{20}c}{{\mathbf{\Psi}}_{dq0}}\\{{\mathbf{\Psi}}_{fDQ}}\\\end{array}}\right]=\left[{\begin{array}{*{20}c}{\mathbf{P}}&{}\\{}&{\mathbf{U}}\\\end{array}}\right]\left[{\begin{array}{*{20}c}{{\mathbf{L}}_{SS}}&{{\mathbf{L}}_{SR}}\\{{\mathbf{L}}_{RS}}&{{\mathbf{L}}_{RR}}\\\end{array}}\right]\left[{\begin{array}{*{20}c}{{\mathbf{P}}^{-1}}&{}\\{}&{\mathbf{U}}\\\end{array}}\right]\left[{\begin{array}{*{20}c}{-{\mathbf{i}}_{abc}}\\{{\mathbf{i}}_{fDQ}}\\\end{array}}\right]}{\displaystyle\left[{\begin{array}{*{20}c}{{\mathbf{\Psi}}_{dq0}}\\{{\mathbf{\Psi}}_{fDQ}}\\\end{array}}\right]=\left[{\begin{array}{*{20}c}{\mathbf{P}}&{}\\{}&{\mathbf{U}}\\\end{array}}\right]\left[{\begin{array}{*{20}c}{{\mathbf{L}}_{SS}}&{{\mathbf{L}}_{SR}}\\{{\mathbf{L}}_{RS}}&{{\mathbf{L}}_{RR}}\\\end{array}}\right]\left[{\begin{array}{*{20}c}{{\mathbf{P}}^{-1}}&{}\\{}&{\mathbf{U}}\\\end{array}}\right]\left[{\begin{array}{*{20}c}{-{\mathbf{i}}_{abc}}\\{{\mathbf{i}}_{fDQ}}\\\end{array}}\right]}


        {\displaystyle\left[{\begin{array}{*{20}c}{{\mathbf{\Psi}}_{dq0}}\\{{\mathbf{\Psi}}_{fDQ}}\\\end{array}}\right]=\left[{\begin{array}{*{20}c}{{\mathbf{PL}}_{SS}{\mathbf{P}}^{-1}}&{{\mathbf{PL}}_{SR}}\\{{\mathbf{L}}_{RS}{\mathbf{P}}^{-1}}&{{\mathbf{L}}_{RR}}\\\end{array}}\right]\left[{\begin{array}{*{20}c}{-{\mathbf{i}}_{dq0}}\\{{\mathbf{i}}_{fDQ}}\\\end{array}}\right]}{\displaystyle\left[{\begin{array}{*{20}c}{{\mathbf{\Psi}}_{dq0}}\\{{\mathbf{\Psi}}_{fDQ}}\\\end{array}}\right]=\left[{\begin{array}{*{20}c}{{\mathbf{PL}}_{SS}{\mathbf{P}}^{-1}}&{{\mathbf{PL}}_{SR}}\\{{\mathbf{L}}_{RS}{\mathbf{P}}^{-1}}&{{\mathbf{L}}_{RR}}\\\end{array}}\right]\left[{\begin{array}{*{20}c}{-{\mathbf{i}}_{dq0}}\\{{\mathbf{i}}_{fDQ}}\\\end{array}}\right]}


        其中{\displaystyle{\mathbf{PL}}_{SS}{\mathbf{P}}^{-1}=\left[{\begin{array}{*{20}c}{L_gtlv65vdw}&{}&{}\\{}&{L_{q}}&{}\\{}&{}&{L_{0}}\\\end{array}}\right]\triangleq{\mathbf{L}}_{dq0}}{\displaystyle{\mathbf{PL}}_{SS}{\mathbf{P}}^{-1}=\left[{\begin{array}{*{20}c}{L_gtlv65vdw}&{}&{}\\{}&{L_{q}}&{}\\{}&{}&{L_{0}}\\\end{array}}\right]\triangleq{\mathbf{L}}_{dq0}}。


        ①變換后的電感系數都變為常數,可以假想dd繞組,qq繞組是固定在轉子上的,相對轉子靜止。


        ②派克變換陣對定子自感矩陣{\displaystyle{\mathbf{L}}_{SS}}{\displaystyle{\mathbf{L}}_{SS}}起到了對角化的作用,并消去了其中的角度變量。{\displaystyle{L_gtlv65vdw},{L_{q}},{L_{0}}}{\displaystyle{L_gtlv65vdw},{L_{q}},{L_{0}}}為其特征根。


        ③變換后定子和轉子間的互感系數不對稱,這是由于派克變換的矩陣不是正交矩陣。


        ④{\displaystyle{L_gtlv65vdw}}{\displaystyle{L_gtlv65vdw}}為直軸同步電感系數,其值相當于當勵磁繞組開路,定子合成磁勢產生單純直軸磁場時,任意一相定子繞組的自感系數。


      變換后的電壓方程


        電壓方程:


        {\displaystyle\left[{\begin{array}{*{20}c}{{\mathbf{U}}_{abc}}\\{{\mathbf{U}}_{fDQ}}\\\end{array}}\right]=\left[{\begin{array}{*{20}c}{{\mathbf{r}}_{S}}&{}\\{}&{{\mathbf{r}}_{R}}\\\end{array}}\right]\left[{\begin{array}{*{20}c}{-{\mathbf{i}}_{abc}}\\{{\mathbf{i}}_{fDQ}}\\\end{array}}\right]+\left[{\begin{array}{*{20}c}{{\mathbf{\dot{\Psi}}}_{abc}}\\{{\mathbf{\dot{\Psi}}}_{fDQ}}\\\end{array}}\right]}{\displaystyle\left[{\begin{array}{*{20}c}{{\mathbf{U}}_{abc}}\\{{\mathbf{U}}_{fDQ}}\\\end{array}}\right]=\left[{\begin{array}{*{20}c}{{\mathbf{r}}_{S}}&{}\\{}&{{\mathbf{r}}_{R}}\\\end{array}}\right]\left[{\begin{array}{*{20}c}{-{\mathbf{i}}_{abc}}\\{{\mathbf{i}}_{fDQ}}\\\end{array}}\right]+\left[{\begin{array}{*{20}c}{{\mathbf{\dot{\Psi}}}_{abc}}\\{{\mathbf{\dot{\Psi}}}_{fDQ}}\\\end{array}}\right]}


        現對等式兩邊同時左乘{\displaystyle\left[{\begin{array}{*{20}c}{\mathbf{P}}&{}\\{}&{\mathbf{U}}\\\end{array}}\right]}{\displaystyle\left[{\begin{array}{*{20}c}{\mathbf{P}}&{}\\{}&{\mathbf{U}}\\\end{array}}\right]},其中{\displaystyle{\mathbf{U}}}{\displaystyle{\mathbf{U}}}為三階單位矩陣。方程化為:


        {\displaystyle\left[{\begin{array}{*{20}c}{{\mathbf{U}}_{dq0}}\\{{\mathbf{U}}_{fDQ}}\\\end{array}}\right]=\left[{\begin{array}{*{20}c}{{\mathbf{r}}_{S}}&{}\\{}&{{\mathbf{r}}_{R}}\\\end{array}}\right]\left[{\begin{array}{*{20}c}{-{\mathbf{i}}_{dq0}}\\{{\mathbf{i}}_{fDQ}}\\\end{array}}\right]+\left[{\begin{array}{*{20}c}{{\mathbf{P{\dot{\Psi}}}}_{abc}}\\{{\mathbf{\dot{\Psi}}}_{fDQ}}\\\end{array}}\right]}{\displaystyle\left[{\begin{array}{*{20}c}{{\mathbf{U}}_{dq0}}\\{{\mathbf{U}}_{fDQ}}\\\end{array}}\right]=\left[{\begin{array}{*{20}c}{{\mathbf{r}}_{S}}&{}\\{}&{{\mathbf{r}}_{R}}\\\end{array}}\right]\left[{\begin{array}{*{20}c}{-{\mathbf{i}}_{dq0}}\\{{\mathbf{i}}_{fDQ}}\\\end{array}}\right]+\left[{\begin{array}{*{20}c}{{\mathbf{P{\dot{\Psi}}}}_{abc}}\\{{\mathbf{\dot{\Psi}}}_{fDQ}}\\\end{array}}\right]}


        由{\displaystyle{\mathbf{\Psi}}_{dq0}={\mathbf{P\Psi}}_{abc}}{\displaystyle{\mathbf{\Psi}}_{dq0}={\mathbf{P\Psi}}_{abc}},


        對兩邊求導,得{\displaystyle{\mathbf{\dot{\Psi}}}_{dq0}={\mathbf{{\dot{P}}\Psi}}_{abc}+{\mathbf{P{\dot{\Psi}}}}_{abc}}{\displaystyle{\mathbf{\dot{\Psi}}}_{dq0}={\mathbf{{\dot{P}}\Psi}}_{abc}+{\mathbf{P{\dot{\Psi}}}}_{abc}},


        所以{\displaystyle{\mathbf{P{\dot{\Psi}}}}_{abc}={\mathbf{\dot{\Psi}}}_{dq0}-{\mathbf{{\dot{P}}\Psi}}_{abc}={\mathbf{\dot{\Psi}}}_{dq0}-{\mathbf{{\dot{P}}P}}^{-1}{\mathbf{\Psi}}_{dq0}}{\displaystyle{\mathbf{P{\dot{\Psi}}}}_{abc}={\mathbf{\dot{\Psi}}}_{dq0}-{\mathbf{{\dot{P}}\Psi}}_{abc}={\mathbf{\dot{\Psi}}}_{dq0}-{\mathbf{{\dot{P}}P}}^{-1}{\mathbf{\Psi}}_{dq0}}


        其中{\displaystyle{\mathbf{{\dot{P}}P}}^{-1}=\left[{\begin{array}{*{20}c}{}&\omega&{}\\{-\omega}&{}&{}\\{}&{}&{}\\\end{array}}\right]}{\displaystyle{\mathbf{{\dot{P}}P}}^{-1}=\left[{\begin{array}{*{20}c}{}&\omega&{}\\{-\omega}&{}&{}\\{}&{}&{}\\\end{array}}\right]},令{\displaystyle{\mathbf{S}}={\mathbf{{\dot{P}}P}}^{-1}{\mathbf{\Psi}}_{dq0}=\left[{\begin{array}{*{20}c}{}&\omega&{}\\{-\omega}&{}&{}\\{}&{}&{}\\\end{array}}\right]\left[{\begin{array}{*{20}c}{\Phi _gtlv65vdw}\\{\Phi _{q}}\\{\Phi _{0}}\\\end{array}}\right]=\left[{\begin{array}{*{20}c}{\omega\Psi _{q}}\\{-\omega\Psi _gtlv65vdw}\\{}\\\end{array}}\right]}{\displaystyle{\mathbf{S}}={\mathbf{{\dot{P}}P}}^{-1}{\mathbf{\Psi}}_{dq0}=\left[{\begin{array}{*{20}c}{}&\omega&{}\\{-\omega}&{}&{}\\{}&{}&{}\\\end{array}}\right]\left[{\begin{array}{*{20}c}{\Phi _gtlv65vdw}\\{\Phi _{q}}\\{\Phi _{0}}\\\end{array}}\right]=\left[{\begin{array}{*{20}c}{\omega\Psi _{q}}\\{-\omega\Psi _gtlv65vdw}\\{}\\\end{array}}\right]}


        于是有{\displaystyle\left[{\begin{array}{*{20}c}{{\mathbf{U}}_{dq0}}\\{{\mathbf{U}}_{fDQ}}\\\end{array}}\right]=\left[{\begin{array}{*{20}c}{{\mathbf{r}}_{S}}&{}\\{}&{{\mathbf{r}}_{R}}\\\end{array}}\right]\left[{\begin{array}{*{20}c}{-{\mathbf{i}}_{dq0}}\\{{\mathbf{i}}_{fDQ}}\\\end{array}}\right]+\left[{\begin{array}{*{20}c}{{\mathbf{\dot{\Psi}}}_{dq0}}\\{{\mathbf{\dot{\Psi}}}_{fDQ}}\\\end{array}}\right]-\left[{\begin{array}{*{20}c}{\mathbf{S}}\\{}\\\end{array}}\right]}{\displaystyle\left[{\begin{array}{*{20}c}{{\mathbf{U}}_{dq0}}\\{{\mathbf{U}}_{fDQ}}\\\end{array}}\right]=\left[{\begin{array}{*{20}c}{{\mathbf{r}}_{S}}&{}\\{}&{{\mathbf{r}}_{R}}\\\end{array}}\right]\left[{\begin{array}{*{20}c}{-{\mathbf{i}}_{dq0}}\\{{\mathbf{i}}_{fDQ}}\\\end{array}}\right]+\left[{\begin{array}{*{20}c}{{\mathbf{\dot{\Psi}}}_{dq0}}\\{{\mathbf{\dot{\Psi}}}_{fDQ}}\\\end{array}}\right]-\left[{\begin{array}{*{20}c}{\mathbf{S}}\\{}\\\end{array}}\right]}


        上式右邊第一項為繞組電阻的壓降,第二項為變壓器電勢,第三項為發電機電勢或旋轉電勢。


      關于派克變換,小編為大家就分享這些。歡迎聯系我們合運電氣有限公司,以獲取更多相關知識。

      相關新聞

      首頁 產品 手機 頂部
      在線客服
      聯系方式

      熱線電話

      15588886921

      400熱線

      400-0886921

      上班時間

      周一到周五

      郵箱地址

      2466458158@qq.com

      二維碼
      主站蜘蛛池模板: 欧美性生交大片免费看| 男ji大巴进入女人的视频| 一区二区亚洲精品国产片| 精品国产亚洲一区二区三区| 人妻中文字幕一区二区视频| 无码粉嫩虎白一线天在线观看| 国产盗摄老熟女视频一区二区三区 | 国产精品人妻| 天堂在线中文| 99久久精品免费看国产一区二区| 人妻aⅴ中文字幕无码| 乱人伦人妻中文字幕在线入口 | 青草青在线视频在线观看| 亚洲精品国产suv| 影音先锋中文字幕无码资源站| 国产疯狂伦交大片| 久久国产精品无码网站| 日韩高清亚洲日韩精品一区二区| 久久久日韩精品一区二区| 国产午夜亚洲精品国产成人小说| 国产精品久久无码一区二区三区网| 成人综合婷婷国产精品久久蜜臀| 一线二线三线天堂| 波多野结衣乳巨码无在线观看 | 伊人久久无码中文字幕| 永久久久免费人妻精品 | 中文字幕无码不卡免费视频| 国内大量揄拍人妻精品视频| 丰满少妇弄高潮了www| 97精品人人a片免费看| 国产美女直播亚洲一区色| 亚洲熟妇av一区二区三区宅男| 国产精品久久久久AV| 韩国和日本免费不卡在线v| 国产精品爽爽久久久久久蜜臀| 久久久久成人网站| 汉沽区| 久久久久久国产精品免费免费| 你懂的视频在线一区二区| 亚洲成a人v欧美综合天堂下载| 成午夜福利人试看120秒|